Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38617374

RESUMO

Background: Right ventricular dysfunction (RVD) portends increased death risk for heart failure (HF) and pulmonary arterial hypertension (PAH) patients, regardless of left ventricular function or etiology. In both, RVD arises from the chronic RV pressure overload, and represents advanced cardiopulmonary disease. RV remodeling responses and survival rates of HF and PAH patients, however, differ by sex. Men develop more severe RVD and die at younger ages than do women. Mechanistic details of this sexual dimorphism in RV remodeling are incompletely understood. We sought to elucidate the cardiac pathophysiology underlying the sex-specific RV remodeling phenotypes, RV failure (RVF) versus compensated RVD. Methods: We subjected male (M-) and female (F-) adult mice to moderate pulmonary artery banding (PAB) for 9wks. Mice underwent serial echocardiography, cardiac MRI, RV pressure-volume loop recordings, histologic and molecular analyses. Results: M-PAB developed severe RVD with RVF, increased RV collagen deposition and degradation, extracellular matrix (ECM) instability, and activation and recruitment of macrophages. Despite the same severity and chronicity of RV pressure overload, F-PAB had more stable ECM, lacked chronic inflammation, and developed mild RVD without RVF. Conclusions: ECM destabilization and chronic activation of recruited macrophages are associated with maladaptive RV remodeling and RVF in male PAB mice. Adaptive RV remodeling of female PAB mice lacked these histopathologic changes. Our findings suggest that these two pathophysiologic processes likely contribute to the sexual dimorphism of RV pressure overload remodeling. Further mechanistic studies are needed to assess their pathogenic roles and potential as targets for RVD therapy and RVF prevention. CLINICAL PERSPECTIVE: What is new?: In a mouse model of pure PH, males but not females showed an association between ECM instability, chronic inflammation with activation of recruited macrophages, and severe RV dysfunction and failure.What are the clinical implications?: In male HF and PH patients, enhancing ECM stability and countering the recruitment and activation of macrophages may help preserve RV function such that RVF can be prevented or delayed. Further preclinical mechanistic studies are needed to assess the therapeutic potential of such approaches. RESEARCH PERSPECTIVE: What new question does this study raise? What question should be addressed next?: What mechanisms regulate RV ECM stability and macrophage recruitment and activation in response to chronic RV pressure overload? Are these regulatory mechanisms dependent upon or independent of sex hormone signaling?

2.
ACS Appl Mater Interfaces ; 15(9): 12423-12433, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36821339

RESUMO

The work output of shape memory polymers during shape shifting is desired for practical application as actuators. Herein, a polyolefin elastomer (POE) and paraffin wax (PW) are co-cross-linked by dynamic boronic ester bonds to enhance the network elasticity and the stress transfer between the two phases, endowing high force storage capacity to the prepared vitrimers. Depending on the phase of PW, one-way force storage is realized by programming at a low temperature (25 °C), owing to which solid PW can promote the locking of POE chains in a low-entropy state, while reversible force storage can be realized by programming at a high temperature (75 °C), owing to which the relaxation of chains facilitated by liquid PW can promote the construction of a stable structure. Based on one-way force storage, a weight-lifting machine with a weight of 20 mg prestrained at 25 °C can lift a 100 g weight, showing a lifting ratio of no less than 5000, with a high work output of 0.98 J/g. A high-temperature alarm can be triggered at varied temperatures (43-56 °C) through controlled force release by adjusting the PW content and programmed prestrains. Based on the reversible force storage, crawling robots and artificial muscles with a work output of 0.025 J/g are demonstrated. The dynamic cross-linking network also confers mold-free self-healing capability to POE/PW vitrimers, and the repair efficiency is enhanced compared with the POE vitrimer due to the improved POE chain motion by liquid PW. The realized one-way and reversible force storage and self-healing by POE/PW vitrimers pave the way for the application of SMPs in the fields of soft robotic actuators.

3.
Nanoscale ; 15(11): 5458-5468, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36852586

RESUMO

Reversible shape-memory polymers (RSMPs) are highly desired for soft actuators due to the repeatability of deformation. Herein, a polyolefin elastomer vitrimer (POEV) was prepared by constructing a dynamic cross-linked network based on boronic ester bonds. POEV showed varied network relaxation in a wide temperature range due to hierarchical network relaxation, and then the entropy decreased and the relaxation of POEV chains was facilely controlled by temperature. The controllable relaxation of POEV by programming the temperature enabled the actuation domain with a reduction in entropy and the skeleton domain with a relatively high entropy can be built in POEV, greatly affecting the reversible shape memory effects (RSMEs). The topological rearrangement resulted from the activated exchange of dynamic covalent bonds, which enables POEV with good shape reconfigurability, and allows for complicated 3D shapes and shape-shifting on demand. More interestingly, combining the decreasing entropy of POEV chains and fully topological rearrangement tailored by temperature, hybrid aligned carbon nanotubes (CNTs) can be constructed in POEV via a two-stage training. Then, the aligned CNTs can enhance the elasticity and act as a hybrid skeleton for RSMEs, avoiding the negative impact of CNTs on the reversible actuation strain. The hierarchical network relaxation facilitates combining all these unusual properties in one shape memory network synergistically, paving new avenues for realizing smart materials with advanced RSME.

4.
Nat Cardiovasc Res ; 1(11): 1022-1038, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36424916

RESUMO

Fight-or-flight responses involve ß-adrenergic-induced increases in heart rate and contractile force. In the present study, we uncover the primary mechanism underlying the heart's innate contractile reserve. We show that four protein kinase A (PKA)-phosphorylated residues in Rad, a calcium channel inhibitor, are crucial for controlling basal calcium current and essential for ß-adrenergic augmentation of calcium influx in cardiomyocytes. Even with intact PKA signaling to other proteins modulating calcium handling, preventing adrenergic activation of calcium channels in Rad-phosphosite-mutant mice (4SA-Rad) has profound physiological effects: reduced heart rate with increased pauses, reduced basal contractility, near-complete attenuation of ß-adrenergic contractile response and diminished exercise capacity. Conversely, expression of mutant calcium-channel ß-subunits that cannot bind 4SA-Rad is sufficient to enhance basal calcium influx and contractility to adrenergically augmented levels of wild-type mice, rescuing the failing heart phenotype of 4SA-Rad mice. Hence, disruption of interactions between Rad and calcium channels constitutes the foundation toward next-generation therapeutics specifically enhancing cardiac contractility.

5.
ACS Appl Mater Interfaces ; 14(19): 22521-22530, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35522609

RESUMO

Soft actuators with integrated mechanical and actuation properties and self-sensing ability are still a challenge. Herein, a stiffness variable polyolefin elastomer (POE) with a reversible shape memory effect is prepared by introducing a typical phase change material, i.e., paraffin wax (PW). It is found that the variable stiffness of POE induced by PW can balance the reversible strain and load-bearing capability of actuators. Especially, carbon nanotubes (CNTs) are concentrated in a thin surface layer by spraying and hot pressing in the soft state of POE/PW blends, providing signal transductions for the strain and temperature perception for actuators. Taking advantage of tunable reversible deformation and mechanical transformation of the POE/PW actuator, different biomimetic robotics, including grippers with high load-bearing capability (weight-lifting ratio > 146), walking robots that can sense angles of joints, and high-temperature warning robots are demonstrated. A scheme combining the variable stiffness and electrical properties provides a versatile strategy to integrate actuation performance and self-sensing ability, inspiring the development of multifunctional composite designs for soft robotics.

6.
J Nanosci Nanotechnol ; 21(4): 2196-2202, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33500034

RESUMO

ZrC was produced by the combustion synthesis technology using Cu, Zr, and graphite as the starting element powders. The synthesis mechanism of ZrC was investigated by the combustion wave quenching experiment. Furthermore, the effects of sizes of C and Cu on the combustion synthesis behavior and products were also explored. Results revealed that ZrC was fabricated through the displacement reaction between C and Cu-Zr liquid. The Cu size hardly affected the combustion temperature and resultant products, indicating that the preparation cost of ZrC could be decreased by employing coarse Cu powders. With increasing C size, the burning temperature and ceramic particle size reduced. Graphite with size of 2.6 µm was used as the C source, and only ZrC nanoparticles and Cu were obtained. The products could be employed to prepare nano-sized ZrC/Cu composites without the elimination of by-products.

7.
Prog Biophys Mol Biol ; 166: 22-28, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-32853595

RESUMO

This article reviews work over the past three decades that is related to the contribution of the pacemaker current, If, to basal and autonomically regulated spontaneous rate in the sinoatrial node. It also addresses how the actions of the pacemaker current relate to those of Ca homeostasis with respect to basal and autonomically regulated rhythm. In this regard, it explores the relative contributions of Ca-sensitive and Ca-insensitive isoforms of adenylyl cyclase to sinoatrial node automaticity. The latter studies include previously unpublished work making use of mice in which both the type 1 and type 8 Ca-sensitive adenylyl cyclase isoforms were knocked out. These studies indicate that the pacemaker current and the L-type Ca current are distinctly influenced by Ca-sensitive and insensitive adenylyl cyclase isoforms.


Assuntos
Marca-Passo Artificial , Nó Sinoatrial , Potenciais de Ação , Adenilil Ciclases , Animais , Cálcio , Camundongos , Isoformas de Proteínas
8.
ACS Appl Mater Interfaces ; 11(33): 30332-30340, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31355626

RESUMO

Reversible shape-memory polymers (RSMPs) show great potential in actuating applications because of its repeatability among many other advantages. Indeed, in many cases, multiresponsive RSMPs are more expected, and the strategy to introduce functional fillers without deteriorating the reversible deformation performance is of great importance. Here, a facile strategy to balance the electro, photothermal performance, and molecular chain mobility is reported. Segregated conductive networks of carbon nanotubes (S-CNTs) are constructed in the poly(ethylene-co-octene) (POE) matrix at a relatively low filler loading, which renders the composite good electrical, photothermal, and actuating properties. A low percolation threshold of 0.25 vol % is achieved. The electrical conductivity is up to 0.046 S·cm-1 for the POE/S-CNT composites with 2 vol % CNT, and the absorption of light (760 nm) is above 90%. These characteristics guarantee that the actuator can be driven at low voltage (≤36 V) and suitable light intensity (250 mW·cm-2) with a good actuating performance. An electric gripper and a light-active crawling robot demonstrate the potential applications in multiresponsive robots. This work introduces a facile strategy to fabricate multiresponsive RSMPs by designing CNT network structures in polymer composites and holds great potential to enlarge the applications of RSMPs in many areas including artificial muscles and bionic robots.

9.
JCI Insight ; 52019 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-31021818

RESUMO

Right ventricular dysfunction is highly prevalent across cardiopulmonary diseases and independently predicts death in both heart failure (HF) and pulmonary hypertension (PH). Progression towards right ventricular failure (RVF) can occur in spite of optimal medical treatment of HF or PH, highlighting current insufficient understanding of RVF molecular pathophysiology. To identify molecular mechanisms that may distinctly underlie RVF, we investigated the cardiac ventricular transcriptome of advanced HF patients, with and without RVF. Using an integrated systems genomic and functional biology approach, we identified an RVF-specific gene module, for which WIPI1 served as a hub and HSPB6 and MAP4 as drivers, and confirmed the ventricular specificity of Wipi1, Hspb6, and Map4 transcriptional changes in adult murine models of pressure overload induced RV- versus LV- failure. We uncovered a shift towards non-canonical autophagy in the failing RV that correlated with RV-specific Wipi1 upregulation. In vitro siRNA silencing of Wipi1 in neonatal rat ventricular myocytes limited non-canonical autophagy and blunted aldosterone-induced mitochondrial superoxide levels. Our findings suggest that Wipi1 regulates mitochondrial oxidative signaling and non-canonical autophagy in cardiac myocytes. Together with our human transcriptomic analysis and corroborating studies in an RVF mouse model, these data render Wipi1 a potential target for RV-directed HF therapy.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Redes Reguladoras de Genes , Insuficiência Cardíaca/genética , Ventrículos do Coração/patologia , Proteínas de Membrana/metabolismo , Disfunção Ventricular Direita/genética , Adulto , Animais , Animais Recém-Nascidos , Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Células Cultivadas , Modelos Animais de Doenças , Progressão da Doença , Feminino , Proteínas de Choque Térmico HSP20/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/cirurgia , Ventrículos do Coração/citologia , Ventrículos do Coração/cirurgia , Humanos , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Pessoa de Meia-Idade , Mitocôndrias/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/patologia , Estresse Oxidativo/genética , Cultura Primária de Células , RNA-Seq , Transdução de Sinais/genética , Regulação para Cima , Disfunção Ventricular Direita/patologia
10.
Life Sci ; 201: 72-80, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29534991

RESUMO

Cardiac Na+ channel remodeling provides a critical substrate for generation of reentrant arrhythmias in border zones of the infarcted canine heart. Recent studies show that Nav1.5 cytoskeletal- and endosomal-based membrane trafficking and function are linked to tubulin, microtubular (MT) networks, and Eps15 homology domain containing proteins like EHD4. AIM: Our objective is to understand the relation of tubulin and EHD4 to Nav1.5 channel protein remodeling observed in border zone cells (IZs) when arrhythmias are known to occur; that is, 3-h, 48-h and 5-day post coronary occlusion. MATERIALS METHODS FINDINGS: Our voltage clamp and immunostaining data show that INa density is decreased in the epicardial border zone cells of the 48 h infarcted heart (IZ48h). Immunostaining studies reveal that in post MI cells the cell surface staining of Nav1.5 was reduced and Nav1.5 distribution changed. However, intense co-staining of Nav1.5 and tubulin occurs in core planes and the perinuclear areas in post MI cells. At the same time, there were marked changes in the subcellular location of the EHD4 protein. EHD4 is co-localized with tubulin protein in discrete intracellular "highway" structures. SIGNIFICANCE: The distribution and expression of the three proteins are altered dynamically in post MI cells. In sum, our work illustrates the spatiotemporal complexity of remodeling mechanisms in the post-infarct myocyte. It will be important in future experiments to further explore direct links between MT, EHD proteins, and cell proteins involved in forward trafficking.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Microtúbulos/metabolismo , Microtúbulos/patologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Canal de Sódio Disparado por Voltagem NAV1.5/biossíntese , Proteínas Nucleares/metabolismo , Animais , Cães , Imuno-Histoquímica , Masculino , Células Musculares/metabolismo , Células Musculares/patologia , Técnicas de Patch-Clamp , Pericárdio/metabolismo , Pericárdio/patologia , Tubulina (Proteína)/metabolismo
11.
Heart Rhythm ; 13(5): 1172-1181, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26775142

RESUMO

Purkinje fibers/cells continue to be a focus of arrhythmologists. Here we review several new ideas that have emerged in the literature and fold them into important new points. These points include the following: some proteins in Purkinje cells are specific to Purkinjes; pacemaker function in Purkinje may be similar to that of the sinus node cell; sink-source concerns about tracts/sheets of Purkinje fibers; role of Ito in arrhythmias; and genetic lesions in Purkinjes and their high impact on cardiac rhythm. Although new ideas about the remodeled Purkinje cell are not the focus of this review, one can easily imagine how Purkinjes and their function may be altered in diseased hearts.


Assuntos
Arritmias Cardíacas/fisiopatologia , Fenômenos Eletrofisiológicos , Ramos Subendocárdicos , Animais , Técnicas Eletrofisiológicas Cardíacas , Humanos , Miócitos Cardíacos/fisiologia , Ramos Subendocárdicos/fisiologia , Ramos Subendocárdicos/fisiopatologia
12.
Arrhythm Electrophysiol Rev ; 4(1): 35-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26835097

RESUMO

Arrhythmia subcellular mechanisms are constantly being explored. Recent knowledge has shown that travelling Ca(2+) waves in cardiac cells are critical for delayed afterdepolarisations and in some cases, early afterdepolarisations. In this review, we comment on the properties of cardiac Ca(2+) waves and abnormal Ca(2+) releases in terms of properties used to describe electrical waves; propagation, excitability and refractoriness.

13.
PLoS One ; 9(9): e106830, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25184222

RESUMO

Because structural remodeling of several proteins, including ion channels, may underlie the abnormal action potentials of Purkinje cells (PCs) that survive in the 48 hr infarcted zone of the canine heart (IZPCs), we sought to determine the subcellular structure and function of the KV1.5 (KCNA5) protein in single IZPCs. Clustering of the Kv1.5 subunit in axons is regulated by a synapse-associated protein, SAP97, and is linked to an actin-binding protein, cortactin, and an intercellular adhesion molecule, N-cadherin. To understand the functional remodeling of the Kv1.5 channel and its regulation in IZPCs, Kv1.5 currents in PCs were measured as the currents blocked by 10 µM RSD1379 using patch-clamp techniques. Immunocytochemistry and confocal imaging were used for both single and aggregated IZPCs vs normal PCs (NZPCs) to determine the relationship of Kv1.5 with SAP-97, cortactin and N-cadherin. In IZPCs, both the sarcolemma (SL) and intercalated disk (ID) Kv1.5 protein are abundant, and the amount of cytosolic Kv1.5 protein is greatly increased. SAP-97 is also increased at IDs and has notable cytosolic localization suggesting that SAP-97 may regulate the functional expression and stabilization of Kv1.5 channels in IZPCs. Cortactin, which is located with N-cadherin at IDs in NZPCs, remains at IDs but begins to dissociate from N-cadherin, often forming ring structures and colocalizing with Kv1.5 within IZPCs. At the same time, cortactin/Kv1.5 colocalization is increased at the ID, suggesting an ongoing active process of membrane trafficking of the channel protein. Finally, the Kv1.5 current, measured as the RSD1379-sensitive current, at +40 mV did not differ between NZPCs (0.81±0.24 pA/pF, n = 14) and IZPCs (0.83±0.21 pA/pF, n = 13, NS). In conclusion, the subcellular structural remodeling of Kv1.5, SAP97 and cortactin maintained and normalized the function of the Kv1.5 channel in Purkinje cells that survived myocardial infarction.


Assuntos
Potenciais de Ação , Cortactina/metabolismo , Canal de Potássio Kv1.5/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Células de Purkinje/metabolismo , Animais , Caderinas/metabolismo , Cães , Masculino , Infarto do Miocárdio/patologia , Miocárdio/patologia , Células de Purkinje/patologia
14.
PLoS One ; 8(10): e78087, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24155982

RESUMO

Cardiac Na channel remodeling provides a critical substrate for generation of reentrant arrhythmias in border zones of the infarcted canine heart. Recent studies show that Nav1.5 assembly and function are linked to ankyrin-G, gap, and mechanical junction proteins. In this study our objective is to expound the status of the cardiac Na channel, its interacting protein ankyrinG and the mechanical and gap junction proteins at two different times post infarction when arrhythmias are known to occur; that is, 48 hr and 5 day post coronary occlusion. Previous studies have shown the origins of arrhythmic events come from the subendocardial Purkinje and epicardial border zone. Our Purkinje cell (Pcell) voltage clamp study shows that INa and its kinetic parameters do not differ between Pcells from the subendocardium of the 48hr infarcted heart (IZPCs) and control non-infarcted Pcells (NZPCs). Immunostaining studies revealed that disturbances of Nav1.5 protein location with ankyrin-G are modest in 48 hr IZPCs. Therefore, Na current remodeling does not contribute to the abnormal conduction in the subendocardial border zone 48 hr post myocardial infarction as previously defined. In addition, immunohistochemical data show that Cx40/Cx43 co-localize at the intercalated disc (IDs) of control NZPCs but separate in IZPCs. At the same time, Purkinje cell desmoplakin and desmoglein2 immunostaining become diffuse while plakophilin2 and plakoglobin increase in abundance at IDs. In the epicardial border zone 5 days post myocardial infarction, immunoblot and immunocytochemical analyses showed that ankyrin-G protein expression is increased and re-localized to submembrane cell regions at a time when Nav1.5 function is decreased. Thus, Nav1.5 and ankyrin-G remodeling occur later after myocardial infarction compared to that of gap and mechanical junctional proteins. Gap and mechanical junctional proteins remodel in IZPCs early, perhaps to help maintain Nav1.5 subcellular location position and preserve its function soon after myocardial infarction.


Assuntos
Anquirinas/metabolismo , Ativação do Canal Iônico , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Animais , Anquirinas/química , Conexina 43/metabolismo , Conexinas/metabolismo , Cães , Junções Comunicantes/metabolismo , Cinética , Masculino , Infarto do Miocárdio/patologia , Miócitos Cardíacos/patologia , Canal de Sódio Disparado por Voltagem NAV1.5/química , Pericárdio/metabolismo , Pericárdio/patologia , Células de Purkinje/metabolismo , Fatores de Tempo , Proteína alfa-5 de Junções Comunicantes
15.
Circ Res ; 113(2): 142-52, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23674379

RESUMO

RATIONALE: The recessive form of catecholaminergic polymorphic ventricular tachycardia is caused by mutations in the cardiac calsequestrin-2 gene; this variant of catecholaminergic polymorphic ventricular tachycardia is less well characterized than the autosomal-dominant form caused by mutations in the ryanodine receptor-2 gene. OBJECTIVE: We characterized the intracellular Ca²âº homeostasis, electrophysiological properties, and ultrastructural features of the Ca²âº release units in the homozygous calsequestrin 2-R33Q knock-in mouse model (R33Q) R33Q knock-in mouse model. METHODS AND RESULTS: We studied isolated R33Q and wild-type ventricular myocytes and observed properties not previously identified in a catecholaminergic polymorphic ventricular tachycardia model. As compared with wild-type cells, R33Q myocytes (1) show spontaneous Ca²âº waves unable to propagate as cell-wide waves; (2) show smaller Ca²âºsparks with shortened coupling intervals, suggesting a reduced refractoriness of Ca²âº release events; (3) have a reduction of the area of membrane contact, of the junctions between junctional sarcoplasmic reticulum and T tubules (couplons), and of junctional sarcoplasmic reticulum volume; (4) have a propensity to develop phase 2 to 4 afterdepolarizations that can elicit triggered beats; and (5) involve viral gene transfer with wild-type cardiac calsequestrin-2 that is able to normalize structural abnormalities and to restore cell-wide calcium wave propagation. CONCLUSIONS: Our data show that homozygous cardiac calsequestrin-2-R33Q myocytes develop spontaneous Ca²âº release events with a broad range of intervals coupled to preceding beats, leading to the formation of early and delayed afterdepolarizations. They also display a major disruption of the Ca²âº release unit architecture that leads to fragmentation of spontaneous Ca²âº waves. We propose that these 2 substrates in R33Q myocytes synergize to provide a new arrhythmogenic mechanism for catecholaminergic polymorphic ventricular tachycardia.


Assuntos
Sinalização do Cálcio/fisiologia , Miócitos Cardíacos/ultraestrutura , Taquicardia Ventricular/patologia , Taquicardia Ventricular/fisiopatologia , Remodelação Ventricular/fisiologia , Potenciais de Ação/fisiologia , Animais , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/patologia
16.
J Biol Chem ; 288(2): 1032-46, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23204520

RESUMO

Kinase/phosphatase balance governs cardiac excitability in health and disease. Although detailed mechanisms for cardiac kinase regulation are established, far less is known regarding cardiac protein phosphatase 2A (PP2A) regulation. This is largely due to the complexity of the PP2A holoenzyme structure (combinatorial assembly of three subunit enzyme from >17 subunit genes) and the inability to segregate "global" PP2A function from the activities of multiple "local" holoenzyme populations. Here we report that PP2A catalytic, regulatory, and scaffolding subunits are tightly regulated at transcriptional, translational, and post-translational levels to tune myocyte function at base line and in disease. We show that past global read-outs of cellular PP2A activity more appropriately represent the collective activity of numerous individual PP2A holoenzymes, each displaying a specific subcellular localization (dictated by select PP2A regulatory subunits) as well as local specific post-translational catalytic subunit methylation and phosphorylation events that regulate local and rapid holoenzyme assembly/disassembly (via leucine carboxymethyltransferase 1/phosphatase methylesterase 1 (LCMT-1/PME-1). We report that PP2A subunits are selectively regulated between human and animal models, across cardiac chambers, and even within specific cardiac cell types. Moreover, this regulation can be rapidly tuned in response to cellular activation. Finally, we report that global PP2A is altered in human and experimental models of heart disease, yet each pathology displays its own distinct molecular signature though specific PP2A subunit modulatory events. These new data provide an initial view into the signaling pathways that govern PP2A function in heart but also establish the first step in defining specific PP2A regulatory targets in health and disease.


Assuntos
Miocárdio/enzimologia , Proteína Fosfatase 2/metabolismo , Animais , Sequência de Bases , Primers do DNA , Cães , Humanos , Imunoprecipitação , Camundongos , Reação em Cadeia da Polimerase , Biossíntese de Proteínas , Proteína Fosfatase 2/genética , Transdução de Sinais , Transcrição Gênica
17.
Circulation ; 126(17): 2084-94, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23008441

RESUMO

BACKGROUND: Human gene variants affecting ion channel biophysical activity and/or membrane localization are linked to potentially fatal cardiac arrhythmias. However, the mechanism for many human arrhythmia variants remains undefined despite more than a decade of investigation. Posttranslational modulation of membrane proteins is essential for normal cardiac function. Importantly, aberrant myocyte signaling has been linked to defects in cardiac ion channel posttranslational modifications and disease. We recently identified a novel pathway for posttranslational regulation of the primary cardiac voltage-gated Na(+) channel (Na(v)1.5) by Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). However, a role for this pathway in cardiac disease has not been evaluated. METHODS AND RESULTS: We evaluated the role of CaMKII-dependent phosphorylation in human genetic and acquired disease. We report an unexpected link between a short motif in the Na(v)1.5 DI-DII loop, recently shown to be critical for CaMKII-dependent phosphorylation, and Na(v)1.5 function in monogenic arrhythmia and common heart disease. Experiments in heterologous cells and primary ventricular cardiomyocytes demonstrate that the human arrhythmia susceptibility variants (A572D and Q573E) alter CaMKII-dependent regulation of Na(v)1.5, resulting in abnormal channel activity and cell excitability. In silico analysis reveals that these variants functionally mimic the phosphorylated channel, resulting in increased susceptibility to arrhythmia-triggering afterdepolarizations. Finally, we report that this same motif is aberrantly regulated in a large-animal model of acquired heart disease and in failing human myocardium. CONCLUSIONS: We identify the mechanism for 2 human arrhythmia variants that affect Na(v)1.5 channel activity through direct effects on channel posttranslational modification. We propose that the CaMKII phosphorylation motif in the Na(v)1.5 DI-DII cytoplasmic loop is a critical nodal point for proarrhythmic changes to Na(v)1.5 in congenital and acquired cardiac disease.


Assuntos
Arritmias Cardíacas/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Animais , Arritmias Cardíacas/enzimologia , Arritmias Cardíacas/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Células Cultivadas , Citoplasma/enzimologia , Citoplasma/genética , Citoplasma/metabolismo , Cães , Variação Genética , Células HEK293 , Humanos , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Fosforilação , Processamento de Proteína Pós-Traducional/genética
18.
Cardiovasc Res ; 95(3): 308-16, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22660482

RESUMO

AIMS: The transient outward potassium current (I(to)) plays important roles in action potential (AP) morphology and dynamics; however, its role in the genesis of early afterdepolarizations (EADs) is not well understood. We aimed to study the effects and mechanisms of I(to) on EAD genesis in cardiac cells using combined experimental and computational approaches. METHODS AND RESULTS: We first carried out patch-clamp experiments in isolated rabbit ventricular myocytes exposed to H(2)O(2) (0.2 or 1 mM), in which EADs were induced at a slow pacing rate. EADs were eliminated by either increasing the pacing rate or blocking I(to) with 2 mM 4-aminopyridine. In addition to enhancing the L-type calcium current (I(Ca,L)) and the late sodium current, H(2)O(2) also increased the conductance, slowed inactivation, and accelerated recovery from the inactivation of I(to). Computer simulations showed that I(to) promoted EADs under the condition of reduced repolarization reserve, consistent with the experimental observations. However, EADs were only promoted in the intermediate ranges of the I(to) conductance and the inactivation time constant. The underlying mechanism is that I(to) lowers the AP plateau voltage into the range at which the time-dependent potassium current (namely I(Ks)) activation is further slowed and I(Ca,L) is available for reactivation, leading to voltage oscillations to manifest EADs. Further experimental studies in cardiac cells of other species validated the theoretical predictions. CONCLUSION: In cardiac cells, I(to), with a proper conductance and inactivation speed, potentiates EADs by setting the AP plateau into the voltage range where I(Ca,L) reactivation is facilitated and I(Ks) activation is slowed.


Assuntos
Potenciais de Ação , Arritmias Cardíacas/etiologia , Miócitos Cardíacos/metabolismo , Canais de Potássio/metabolismo , Potássio/metabolismo , 4-Aminopiridina/farmacologia , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Estimulação Cardíaca Artificial , Simulação por Computador , Cães , Feminino , Peróxido de Hidrogênio/farmacologia , Cinética , Masculino , Camundongos , Modelos Cardiovasculares , Miócitos Cardíacos/efeitos dos fármacos , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/efeitos dos fármacos , Coelhos , Ratos , Ratos Wistar , Sódio/metabolismo
19.
Cardiovasc Res ; 94(3): 450-9, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22374989

RESUMO

AIMS: Reentry accounts for most life-threatening arrhythmias, complicating myocardial infarction, and therapies that consistently prevent reentry from occurring are lacking. In this study, we compare antiarrhythmic effects of gene transfer of green fluorescent protein (GFP; sham), the skeletal muscle sodium channel (SkM1), the liver-specific connexin (Cx32), and SkM1/Cx32 in the subacute canine infarct. METHODS AND RESULTS: Immediately after ligation of the left anterior descending artery, viral constructs were implanted in the epicardial border zone (EBZ). Five to 7 days later, efficient restoration of impulse propagation (narrow QRS and local electrogram duration) occurred in SkM1, Cx32, and SkM1/Cx32 groups (P< 0.05 vs. GFP). Programmed electrical stimulation from the EBZ induced sustained ventricular tachycardia (VT)/ventricular fibrillation (VF) in 15/22 GFP dogs vs. 2/12 SkM1, 6/14 Cx32, and 8/10 SkM1/Cx32 (P< 0.05 SkM1 vs. GFP). GFP, SkM1, and SkM1/Cx32 had predominantly polymorphic VT/VF, whereas in Cx32 dogs, monomorphic VT predominated (P< 0.05 for Cx32 vs. GFP). Tetrazolium red staining showed significantly larger infarcts in Cx32- vs. GFP-treated animals (P< 0.05). CONCLUSION: Whereas SkM1 gene transfer reduces the incidence of inducible VT/VF, Cx32 therapy to improve gap junctional conductance results in larger infarct size, a different VT morphology, and no antiarrhythmic efficacy.


Assuntos
Arritmias Cardíacas/tratamento farmacológico , Conexinas/metabolismo , Junções Comunicantes/efeitos dos fármacos , Proteínas Musculares/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/fisiopatologia , Canais de Sódio/metabolismo , Fibrilação Ventricular/tratamento farmacológico , Animais , Antiarrítmicos/uso terapêutico , Conexinas/genética , Cães , Estimulação Elétrica , Eletrocardiografia , Masculino , Camundongos , Proteínas Musculares/genética , Ratos , Canais de Sódio/genética , Fibrilação Ventricular/fisiopatologia , Proteína beta-1 de Junções Comunicantes
20.
Circ Arrhythm Electrophysiol ; 4(3): 344-51, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21493965

RESUMO

BACKGROUND: The border zone of healing myocardial infarcts is an arrhythmogenic substrate, partly the result of structural and functional remodeling of the ventricular gap junction protein, Connexin43 (Cx43). Cx43 in arrhythmogenic substrates is a potential target for antiarrhythmic therapy. METHODS AND RESULTS: We characterized Cx43 remodeling in the epicardial border zone (EBZ) of healing canine infarcts 5 days after coronary occlusion and examined whether the gap junction-specific agent rotigaptide could reverse it. Cx43 remodeling in the EBZ was characterized by a decrease in Cx43 protein, lateralization, and increased Cx43 phosphorylation at serine (S) 368. Rotigaptide partially reversed the loss of Cx43 but did not affect the increase in S368 phosphorylation, nor did it reverse Cx43 lateralization. Rotigaptide did not prevent conduction slowing in the EBZ, nor did it decrease the induction of sustained ventricular tachycardia by programmed stimulation, although it did decrease the EBZ effective refractory period. CONCLUSIONS: We conclude that partial reversal of Cx43 remodeling in healing infarct border zone may not be sufficient to restore normal conduction or prevent arrhythmias.


Assuntos
Fenômenos Eletrofisiológicos/fisiologia , Junções Comunicantes/fisiologia , Infarto do Miocárdio/complicações , Oligopeptídeos/farmacologia , Pericárdio/metabolismo , Recuperação de Função Fisiológica/fisiologia , Taquicardia Ventricular/metabolismo , Animais , Modelos Animais de Doenças , Cães , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Junções Comunicantes/efeitos dos fármacos , Sistema de Condução Cardíaco/efeitos dos fármacos , Sistema de Condução Cardíaco/metabolismo , Sistema de Condução Cardíaco/fisiopatologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Pericárdio/fisiopatologia , Taquicardia Ventricular/tratamento farmacológico , Taquicardia Ventricular/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...